skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Haichao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we consider an infinite-dimensional phase retrieval problem to reconstruct real-valued signals living in a shift-invariant space from their phaseless samples taken either on the whole line or on a discrete set with finite sampling density. We characterize all phase retrievable signals in a real-valued shift-invariant space using their nonseparability. For nonseparable signals generated by some function with support length L, we show that they can be well approximated, up to a sign, from their noisy phaseless samples taken on a discrete set with sampling density 2L-1 . In this paper, we also propose an algorithm with linear computational complexity to reconstruct nonseparable signals in a shift-invariant space from their phaseless samples corrupted by bounded noises. 
    more » « less